
1

Abstract - TEMPEST is a planner for long-range planetary
navigation that bridges the gap between path planning and
classical planning and scheduling. In addition to planning
routes, our approach yields the timing and placement of
actions to conserve and restore expendable resources and
that abide by operational constraints. TEMPEST calls upon
the Incremental Search Engine (ISE) to enable heuristic path
planning and efficient re-planning under global constraints,
over a four dimensional state space. We describe our
approach, then demonstrate how the planner operates in a
simulated Mars science traverse. Following a brief summary
of TEMPEST results from a recent rover field experiment,
we evaluate our research progress and describe our current
and future work.

TABLE OF CONTENTS

1. INTRODUCTION .. 1
2. MOTIVATION.. 2
3. RELATED WORK .. 2
4. TECHNICAL APPROACH..................................... 3
5. OPERATIONAL CONCEPT 8
6. PRELIMINARY RESULTS 9
7. CONCLUSIONS .. 12
8. CURRENT AND FUTURE WORK 12
9. ACKNOWLEDGMENTS 13
REFERENCES.. 13

1. INTRODUCTION1

The NASA Mars Technology Program (MTP) [5] currently
funds a wide range of technology projects in support of the
Mobile Science Laboratory (MSL) mission concept, under
investigation for the 2009 launch opportunity [35]. Under
this umbrella, the MTP supports a number competitively-
selected robotics research tasks. In contrast with more gen-
eral research calls, the MTP selects technologies based on
specific MSL mission needs, and requires that they meet
basic criteria for developmental maturity prior to selection.
To ease software evaluation and possible inclusion in future
missions, participating teams are expected to integrate their
software within a new NASA software architecture, CLAR-
Aty (Coupled Layer Architecture for Robotic Autonomy)
[34], by the conclusion of the project. Participants in the pro-
gram include teams at NASA/JPL, NASA Field Centers and
universities.

As one of the MTP participants, our team is developing soft-
ware for autonomous global path planning, combining long-
range route planning, resource management and enforce-
ment of constraints. Several MSL design features motivate
our work. To enable the investigation of specific surface tar-
gets, the MSL mission seeks long-range mobility to over-
come worst-case landing errors. Furthermore, MSL may
involve travel to several distinct sites, interleaving periods of
dedicated, localized science data collection with periods of
traverse and opportunistic science. To alleviate the power
constraints of previous missions, the MSL rover may be
powered by RTG (Radioisotope Thermo-electric Generator),
and possibly supplemented by solar arrays. However, the
power sources may not be sufficient to supply locomotion
for long time periods. Batteries will store energy for use in
high-power activities. Finally, current plans dictate a primary
mission lasting up to 500 sols, entailing daily and seasonal
lighting changes. All these factors motivate global path plan-
ning.

Our work in this area began under, and is supplemented by,
other NASA-funded projects, namely the Sun-Synchronous
Navigation project [36][37][31] and the Life in the Atacama
project [38][32]. In this paper, we describe our progress to
date, as a result of all these efforts, but with an emphasis on
our work directed towards the MTP. We begin by further
motivating global path planning for planetary applications,
then review the current state of research relevant to the prob-
lem. The main body of the paper then details our approach to
solving the problem, and demonstrates our software in both

1. 0-7803-8155-6/04/$17.00 © 2004 IEEE
IEEE AC paper #1339

Figure 1: Mobile Science Laboratory Rover (artwork is
conceptual and pre-decisional) - courtesy NASA JPL.

Global Path Planning for Mars Rover Exploration

Paul Tompkins
Anthony Stentz

David Wettergreen

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213
Phone: 412-268-5188

{pauldt, tony, dsw}@ri.cmu.edu

2

simulation and on rover prototypes in Mars-analog terrain.
We conclude by evaluating our current state of research,
and by charting the course for continued research and
development in the coming years.

2. MOTIVATION

Long-Range Navigation

A critical task in achieving rover autonomy is automatic
route planning between a landing site and operations sites.
To date, path planning research for planetary rovers has
focused on the problem of navigating locally through fields
of rock obstacles en route to a global position goal, over
tens of meters. In upcoming missions, long-distance and
long-term path planning will be necessary for a robot to
travel between its landing site and operations sites. The
Mobile Science Laboratory mission, slated for 2009, may
have a landing error ellipse of 10 kilometers along-track by
3 kilometers cross-track [5]. Accordingly, to target a spe-
cific location for scientific study, a robot must be able to
traverse 10 kilometers or more of terrain.

Local path planning strategies are tailored specifically for
travel amongst rocks at or below the scale of the rover, and
only consider terrain within a few meters of the robot to
make path decisions. Other sources of data, for example
orbital imagery, will enable a rover to anticipate opportuni-
ties and hazards and to incorporate these predictions into
path selection.

Long distances and durations introduce new complications
absent in current local path planning. These include naviga-
tion around and through large-scale terrain, the local occlu-
sion of light and communications, and variable lighting
induced by planetary rotation.

Resource Management

Resource management is essential to rover self-sufficiency.
Resources take many forms, from battery energy and
onboard memory, whose state can be defined by a fraction
of the total capacity, to shared hardware such as cameras,
whose usage state is binary.

The favored approach for autonomous resource manage-
ment is through AI planning and scheduling, for example
the Remote Agent [2] and ASPEN [4] systems. For orbit-
ing spacecraft and short-range rovers, energy expenses are
dominated by loads from active electronics components.
Solar power follows simple models, and the timing of
nightfall and eclipses are easily predicted. In these cases,
the traditional planning and scheduling approach is power-
ful. However, many long-range rover resource expenses
and gains are path-dependent and cannot be adequately
considered outside a path planner. For example, energy
management must consider locomotion energy as a func-
tion of terrain, and whether shadows will permit solar
charging as a function of position and time. A rover must
consider the effects of path choices on energy balance to
determine which paths are feasible or optimal.

As mentioned earlier, the MSL rover is likely to incorporate
an RTG for continual power, day and night. However, it is
probable that the RTG will not provide a sufficient output to
power continuous locomotion. The RTG output power and
MSL battery capacity will govern the maximum duration
for traverses, and will determine how long a battery re-

charge will take. A planning and scheduling module and a
resource-cognizant path planner could share the duty of
coordinating the timing of traverses, battery charging and
science activities.

3. RELATED WORK

The global path planning problem is multi-faceted - ideally
it calls for a solution that solves for optimal trajectories
through spatial, temporal and resource dimensions. These
must also satisfy local and global operational constraints.
Furthermore, an algorithm operating under the uncertainty
of planetary exploration must have the ability to efficiently
re-plan as a robot gains new information about its environ-
ment. As such, we must examine the existing body of work
in several areas to adequately assess the current state-of-art.

General Path Planning - At the level of algorithms, a num-
ber of approaches address path planning to goals while
avoiding obstacles. Most plan in the configuration space, in
which each dimension is a degree of freedom for robot
motion, and obstacles in the real world map to unreachable
regions in the space. Potential field algorithms [12] plan by
superposing an attractive field centered at a global goal
with repulsive fields surrounding obstacles. A “plan” sim-
ply follows the steepest resulting gradient to the goal. How-
ever, this strategy is vulnerable to local minima, and hence
is incomplete. Many algorithms focus more on region
decomposition or “skeletonization”, and then derive plans
using a simple graph search between regions. These include
simple grid approaches, cell decomposition [22], visibility
graphs [16], and Voronoi graphs [17]. Randomized algo-
rithms, often used for robots with many degrees of freedom,
quickly explore high-dimensional spaces to find feasible
paths. These include probabilistic road maps [11] and rap-
idly-exploring random trees [14]. These algorithms are best
suited in applications where finding the optimal path is
unnecessary.

Search - Several search algorithms find optimal paths
through a graph, according to an objective function, given
the cost of actions between nodes in the graph. The A*
algorithm uses the concept of “admissible” heuristics to
find the optimal path in the minimum number of search
steps [19]. However, A* neither enables global constraint
satisfaction nor efficient re-planning. The ABC algorithm
[15] generalizes A* to handle a variety of global constraint
forms. However, since constraints are tracked in each state
and non-dominated paths are retained, we expect ABC to
exhibit the same complexity as exhaustive search, and
hence impractical for online operation. In the direction of
re-planning, the D* algorithm offers the first-time planning
optimality of A*, but generalizes to enable optimally effi-
cient path repair in response to changing cost information
[26][27][28]. Where A* is forced to plan from scratch if
any state transition costs change, D* determines which
nodes in the graph are affected by the changes, and repairs
only those nodes. The effect is a dramatic improvement in
speed for localized changes to the costs. However, D* does
not enable global constraint satisfaction.

The CD* algorithm is one of the few to address the com-
bined problem of optimal path planning and re-planning
under global constraints [29]. It defines a composite func-
tion that is a weighted sum of the objective function and a
constraint function. To plan initially, CD* uses a binary
search to find an optimal weighting, calling D* with differ-
ent weights until it achieves the optimal constraint-satisfy-

3

ing path. In re-planning, CD* re-uses the graphs created by
D* in the initial binary search to find a new weight. Chang-
ing the weight in D* is equivalent to re-specifying all the
costs in the graph, eliminating the benefits of the D* algo-
rithm. However, in many cases very few of the weights
change with updates to the costs, and so CD* is often very
efficient. In the worst case, the D* searches perform like
A*. As we describe in the Technical Approach section, an
algorithm called Incremental Search Engine [30] provides
optimal planning and re-planning under global constraints
in high-dimensional state spaces, yet with greater predict-
ability in performance than CD*.

Local Terrain Navigation - A large body of work addresses
the local terrain navigation problem. The fact that the
NASA Mars Exploration Rovers will use stereo-vision
based obstacle detection and avoidance [8] in 2004 is testa-
ment to its growing maturity. Several related terrestrial sys-
tems display similar capabilities for reliable autonomous
navigation over tens or hundreds of meters
[13][25][27][37], and new techniques incorporating
detailed vehicle kinematics and dynamics [33] and esti-
mates of soil properties [10] may achieve vehicle agility
over a much wider range of conditions. We view all these
developments as supporting the global path planning cause
- the better the local problem is solved, the more likely
solutions for the global problem become demonstrable.

Global Terrain Navigation - Very little work has addressed
natural terrain path planning at the large scale. We attribute
this to a sensible prioritization - planetary surface explora-
tion has had no immediate need for global navigation, and
realistically, the large-scale problem cannot be solved until
reliable solutions exist for the local problem. Richbourg et
al. [20] uses optical analogies to solve high-level path plan-
ning through polygonal homogeneous cost fields. Rowe
[21] extends that work to include linear features like roads
and rivers. Pai and Reissell present a multi-resolution
method for evaluating terrain elevation models for travers-
ability using wavelets [18], while Howard and Seraji use
fuzzy-logic filters [9]. Both techniques could prove valu-
able for this problem. However, our preference was to
coarsely model terrain-vehicle interaction to estimate tra-
versability and locomotion power. These techniques are
more heuristic in nature.

Temporal Path Planning - Solutions for temporal path plan-
ning often decompose the problem into separate problems
of path selection and subsequent path timing. The early
manipulation work of Bobrow et al. [3] first selects paths
that avoid static obstacles, then select acceleration profiles
that satisfy dynamics and motor torque constraints. Frai-
chard adds dynamic obstacles to the problem [6]. Shiller
and Gwo apply a related technique for a vehicle rolling on
smooth terrain [24]. This general approach is dissatisfying
because it avoids the most interesting inter-relationships
between path selection and timing. It is also not complete -
in certain instances, a selected path may not permit a feasi-
ble solution according to dynamics or obstacle constraints.

Resource Management - Research to solve the resource
management problem is restricted almost exclusively to
classical planning and scheduling. One could argue that, for
non-renewable energy resources (e.g. primary batteries,
fuel tanks), minimum-distance paths are also optimal
energy paths. Unfortunately, this approach won’t work for
renewable energy resources like rechargeable batteries.
Shillcut [23] evaluates several robot coverage patterns in

terms of energy cost and solar energy collection, in one of
the few examples of path-oriented resource management.
However, the work falls short of incorporating these met-
rics into a planning framework.

In the realm of more classical planning and scheduling
approaches, the Remote Agent Experiment [2] and the
ASPEN and CASPER systems [4] are perhaps the most
clearly space relevant. Each decomposes high-level mission
goals into low level sequences of concurrent actions that
constitute plans. The selection and ordering of actions
achieves the mission goals and satisfies all global and inter-
action constraints, including those imposed by resources.
Planner-scheduler systems perform well under highly-pre-
dictable spaceflight conditions, or in situations of limited
surface mobility. However, just as path planners tend to
avoid resource considerations, planner-scheduler systems
largely skirt path issues. None satisfactorily analyze the
inter-dependence of activities and paths, for example, how
route selection could affect resource availability and conse-
quently enable or prevent certain rover activities. That said,
with such highly-developed systems for activity planning, it
seems the wisest approach would integrate a path-knowl-
edgeable planner-scheduler with a separate, resource-
knowledgeable path planner.

4. TECHNICAL APPROACH

TEMPEST combines a novel search algorithm called Incre-
mental Search Engine with a high-level search strategy to
find optimal plans. It defines the global path planning
domain with coarse models of the world, the rover, avail-
able actions and operational constraints. The following sec-
tions describe this technical approach.

Incremental Search Engine (ISE)

ISE is the search algorithm that allows TEMPEST to reason
about rover actions, achieving goals efficiently, and satisfy-
ing constraints. ISE is a graph-theory based, heuristic
search algorithm optimized for planning and re-planning in
high-dimensional spaces [30]. The algorithm is complete,
and optimal to the resolution of the discrete state space and
actions.

An ISE state space comprises two types of variables.
IPARMS are independent variables, whose values are dis-
crete and generally coarse. DPARMS are arbitrarily fine
dependent variables, whose values are grouped according
to equivalence classes. Actions define transitions between
IPARMS values. For each action, a user-defined state tran-
sition function defines how DPARMS change in response
to changes in IPARMS. For example, an application might
define two spatial IPARMS variables (X, Y), and a
DPARMS variable for time (T). The state transition func-
tion would take the form (∆X, ∆Y) = f(a), with ∆T = f(∆X,
∆Y). ISE derives paths that are of minimum cost according
to an objective function. The objective function accumu-
lates costs over the sequence of actions defining a path,
where costs are functions of IPARMS, DPARMS and other
parameters.

ISE performs a backwards-chaining search, beginning from
one or more goal states. Using a best-first approach directed
by the objective function and an admissible heuristic, ISE
prioritizes the states to expand. ISE expands a state by
backwards-simulating all possible actions from the state. It
maintains local constraints by preventing action-state com-

4

binations that violate them, and global constraints by moni-
toring the constrained, path-specific quantities, and
propagating only those paths that properly manage them.
Each resulting initial state becomes a new node in a
directed graph. Every node represents a state from which
one of the goals is reachable. Eventually, branches of the
graph may intersect the start state IPARMS. Some of these
paths may be judged “feasible” according to user-supplied
DPARMS criteria. From these, ISE determines the optimal
path - the least expensive path according to the user-sup-
plied objective function.

ISE’s results are identical to those yielded by A* [19] in an
initial plan search with no constraints. However, once envi-
ronment models have changed locally, ISE operates far
more efficiently than A* in re-planning paths. This is a
major benefit for TEMPEST, since environment models
might evolve as the rover gains new information through
sensing. Where changes would force A* to re-build its
search from scratch, ISE uses incremental graph theory
techniques to repair both the feasible set of solutions and
the optimal path within it. The algorithm is time efficient
because it determines which portions of the search space
are affected by new information and limits the re-computa-
tion to those portions. The algorithm is space efficient
through the use of three mechanisms:

• Dynamic State Generation: ISE creates a state when it
is needed and deletes it when it no longer serves a pur-
pose. This feature precludes the need to allocate an
entire multi-dimensional space even though only a
small part of it may be searched.

• State Dominance: ISE determines when one state dom-
inates another, through user-defined routines, and
prunes the dominated state to minimize unnecessary
state proliferation.

• Resolution Pruning: ISE reasons about DPARMS vari-
able resolution and prunes the lesser states from a
DPARMS resolution-equivalent class. This feature can
dramatically reduce the number of states while still
preserving resolution optimality.

ISE enables two modes:

• BESTPCOST finds the minimum cost path. In this
mode, the feasible plan with the lowest path cost, as
defined by the objective function, is the optimal solu-
tion.

• BESTDPARMS finds the “best” state solution below a
maximum path cost. In this mode, the objective func-
tion serves only to measure path costs against the max-
imum. The user-defined “better” criterion evaluates
DPARMS to prioritize plans that are equal under the
objective function to determine the “best” solution.

ISE is a general-purpose, discrete space path search algo-
rithm. To apply ISE to a specific problem, it requires a user
to define the domain in terms of the state space S, the
actions A, the state transition function , the start
and goal states, and the conditions for feasibility and opti-
mality. The following sections describe how TEMPEST
defines these domain elements for long-range navigation.

Domain Models

TEMPEST composes world models and rover models that
capture relevant properties of the natural environment, the

mission environment and vehicle performance. These mod-
els are the foundation for defining the ISE state space,
actions and constraints. To ease the computational burden
of extending the planning horizon over a day and over one
or more kilometers, we have purposely selected coarse
models for both the world and rover. They provide reason-
able projections of action outcomes under various environ-
mental conditions, but at a resolution that permits
reasonable performance on a rover processor. The follow-
ing subsections illustrate a few examples of world and rover
models. Many others are clearly possible. To apply TEM-
PEST, the list of models must be tailored to the planning
problem to encompass all of the desired rover-environment
interactions. Table 1 and Table 2 summarize the models
currently used in TEMPEST for long-range navigation
under solar power.

Terrain - The terrain model is founded on a globally-refer-
enced elevation map of the operations area. The terrain
model represents generic, raster-patterned digital elevation
data. Spatial resolutions for this form of data are typically
10-30 meters per pixel, far larger than the vehicle footprint.
The elevation map grid defines the orientation and resolu-
tion of the two spatial dimensions of the state space. The
software derives slope and slope aspect from the elevation
model. Both elevation and slope maps are referenced to
standard geodetic biaxial ellipsoids for conversion to lati-
tude/longitude or planet-centered Cartesian coordinates.

Ephemeris - - The CSPICE ephemeris generation software
provides relative position and orientation for all major bod-
ies in the Solar System [1]. In counterpoint to the guiding
principle of coarse modeling, CSPICE is a very accurate
tool, accounting for speed-of-light delays and stellar aberra-
tion in determining a body’s apparent location. The
CSPICE time standard - barycentric dynamical time - is the
basis time reference in TEMPEST.

Line-of-Sight Maps - Line-of-sight (LOS) maps encode the
elevation angle of a source object above the local ground
plane as defined by the slope map (see Figure 2). They also
map shadowed locations, where the source is below the
ground plane or occluded by other terrain features. LOS
maps currently represent incident sunlight for the purpose
of modeling solar energy, lighting and shadowing. How-
ever, they could also represent line-of-sight to orbiting

S A S→×

Table 1: Examples of TEMPEST World Models

Model Description

Terrain • Elevation map (DEM)
• Slope map
• Geodetic reference ellipsoid

Ephemeris • Solar System body relative position/ori-
entation

• Barycentric Dynamical Time reference

Line-of-
Sight
(LOS)

• Lighting maps, surface-to-surface LOS
• LOS maps define instantaneous inci-

dent viewing angle on local terrain
• LOS map sequences define time-vary-

ing surface viewing

Solar Flux • Estimated peak solar flux

5

spacecraft or visibility to fixed points elsewhere on the ter-
rain surface. A ray tracing algorithm projects from the
source position (e.g. a Solar System body) onto the terrain
model. Sequences of LOS maps, at regular time intervals,
represent time-varying visibility.

Solar Flux - The incident energy per unit area is modeled
by the peak flux (as experienced under perpendicular inci-
dence) multiplied by the sine of the elevation angle to cap-
ture foreshortening effects. Atmospheric attenuation must
be captured in the peak flux value - we currently assume no
variation with angle from zenith. We currently ignore all
other effects.

Rover - This model aggregates rover component models
relevant to the long-range navigation planning problem (see
Table 2). The rover model enables the computation of state
transition costs for actions - for example time and energy. It

also models the rover parameters used in constraint check-
ing.

To date, the emphasis of TEMPEST planning has been on
energy management. Therefore, most components predict
power as a function of activity. Given an action duration, as
provided by action target parameters, these components
each add or subtract energy from the rover battery. One
might envision modeling other resources similarly. For
example, mission data, onboard memory and communica-
tions with Earth could take the place of energy, battery and
solar charging, respectively.

As listed in Table 2, the navigation camera model does not
predict power (it would be negligible in comparison with
other loads), but specifies a camera orientation and field-of-
view. TEMPEST actions all implicitly represent vehicle
orientation. The planner uses rover component models with
pointing parameters to check constraints, for example to
compute sun incidence angle on a solar array or to predict
camera sun blinding.

State Space

For the energy management problem, the TEMPEST state
space comprises four dimensions - x, y, time and battery
energy. The two DEM grid coordinates specify two position
IPARMS variables in ISE, X and Y. The CSPICE basis time
system, in integer seconds, specifies a third, DPARMS vari-
able T.

The fourth dimension, battery energy E, is more compli-
cated, both in its semantics and how it is represented in ISE.
It is important to clarify that E does not represent the instan-
taneous energy in the battery, but rather the minimum bat-
tery energy required to reach the goal. Because ISE
searches backwards, from goal to start, it requires a user-
specified endpoint goal state (xg, yg, tg, eg) from which to
begin its search. Since there is no operational penalty in
arriving at the goal with battery energy greater than eg, eg
represents the minimum goal arrival energy. With this in
mind, let us address how to interpret the effects of positive-
energy actions and negative-energy actions.

Actions with net positive energy in the forward-time direc-
tion (e.g. solar charging) decrease the value of E in a back-
wards search. One or more successive “positive energy”
actions run backwards could drive E to zero. Herein lies the
subtlety: E=0 does not indicate an empty battery, and
should not cause ISE to abandon the path instance. Instead,
zero E indicates the goal could be reached from the current
position and time, even with an empty battery. In tracking
backwards, ISE prevents E from dipping below zero - there
is no physical meaning to an energy state with “less-than-
empty” conditions.

Alternatively, actions with a net negative energy in the for-
ward-time direction (e.g. nighttime locomotion) will tend to
cause E to increase in a backwards search. This could cause
the value of E to exceed battery capacity. Perhaps counter
intuitively, ISE should abandon such a path - it requires a
“more-than-full” charge to achieve the goal. Put simply,
low E is good, and high E is bad.

A further complication with E is in its representation within
ISE. In contrast to position and time, it is not represented as
either an IPARMS or DPARMS variable, but within the

Figure 2: Sample LOS Map for Natural Terrain

Table 2: Examples of TEMPEST Rover Models

Model Description

Locomotor • Power load, computed from mass, max-
imum speed, effective coefficient of
friction, drive train efficiency, terrain

Solar
Array

• Power source, computed from area,
panel efficiency, sun angle of incidence

Nuclear
Generator

• Power source, fixed output

Battery • Energy capacity, from minimum and
maximum charge levels

Electronics
load

• Power load, fixed value

Navigation
cameras

• Constraint management, modeling
camera orientation and field-of-view

6

objective function. We describe how in the Feasibility and
Optimality section.

Path solutions from ISE are trajectories through this state
space. Discrete points in the plans, “waypoints”, are 4-
tuples of (x, y, t, e).

Actions, Constraints and the State Transition Function

TEMPEST specifies a list of basic motion- and energy-rele-
vant actions that coarsely describe the essential activities of
rover navigation. An action is defined by a name, and a tar-
get change in IPARMS. Actions that do not affect the
IPARMS encode a target change in DPARMS. Given the
target parameters, the effect of the action is determined by
the specified set of active rover components for the action.
Table 3 summarizes the actions and minimum component
sets used for recent tests. Drive, for example, must incorpo-
rate the Locomotor component, an electronics load to repre-
sent the power from unspecified components, and the
navigation cameras to check for sun blinding. A power
source of some type (e.g. battery, solar array, nuclear gener-
ator) powers the components. Both Charge and Hibernate
are stationary actions, so require a DPARMS target change.
Both are fixed-duration actions, but of differing length.
However, each can be executed multiple times in series to
provide a longer action.

A user can also specify local, action-specific constraints
that specify state conditions under which an action cannot
be executed. Table 4 lists some examples of constraints
used in TEMPEST testing. Constraints can be applied in
combination to refine the behavior of actions. For example,
referring to the actions in Table 3 and constraints in Table 4,
one might apply Maximum Slope, Daylight and Sun-In-
Camera to the Drive actions. This could model a safety
limit on slope climbing, and would prevent driving when
the cameras cannot detect terrain, either because of dark-
ness or if blinded by the sun. Similarly, Charge might apply

the Direct Sun LOS constraint to distinguish itself from
Hibernate.

Given an action and initial state, the TEMPEST state transi-
tion function uses a path integrator that calls on the world
and rover models to compute the final state.

Specifying Start and Goal States

ISE must know the goal states from which to begin its back-
wards-chaining search. In the energy management domain,
TEMPEST specifies goal positions and battery energies,
but leaves arrival time unconstrained. To specify the time
variable to ISE, TEMPEST utilizes the ISE multiple goal
mechanism. TEMPEST estimates a likely range of arrival
times - a “goal window” - based on best-case and worst-
case projections on path duration. At even intervals within
the goal window, TEMPEST designates separate ISE goal
states. All have the same position and energy, but each has
a different time value. Since the search graph does not dis-
tinguish between paths growing from different goals, path
solutions are free to terminate at any interval within the
goal window.

TEMPEST also specifies the start state so that ISE can
determine which paths are feasible solutions. It designates
the nearest grid cell center as the IPARMS position start (xs,
ys). Since the search occurs on the coarse IPARMS discrete
grid, it is reasonable to designate a specific point. However,
time is an arbitrarily fine DPARMS variable in the search.
A search is not likely to find any path that precisely
matches both the start position and a specific time, so TEM-
PEST designates a “start window” that spans the current
time (). Finally, TEMPEST designates the cur-
rent battery energy es as the maximum energy for the start
of any feasible plan.

Feasibility and Optimality

Using this specification of the start and goal states, ISE
searches for feasible plans from which to select an optimal
plan. Candidate plans are sequences of states, or waypoints:

Table 3: Example Action Specifications

Action IPARMS
Target
∆X, ∆Y

DPARMS
Target

Min. Active
Components

Drive
(8 total)

None • Locomotor
• Electronics

load (high)
• Navigation

cameras
• Power

source

Charge 0,0 ∆T • Battery
• Electronics

load (med./
high)

Hibernate 0,0 ∆T • Battery
• Electronics

load (low)

1 or 0,±
1 or 0±

Table 4: Example Local Constraints

Local
Constraint

Description

Maximum
slope

Prevents actions on slopes above smax

Daylight Prevents actions during nighttime.

Direct Sun
LOS

Prevents actions in shadow or at night.

Sun-In-Cam-
era

Prevents actions where sun vector
enters field-of-view of camera.

(1)

tsi t tsf< <

P w1 … wn, ,{ } with wi xi yi ti ei, , ,(), ti ti 1+<==

7

Given a start state and a start window

time interval , a plan P is feasible if and only if:

In both the Sun-Synchronous Navigation project [31] and
Life in the Atacama project [38][32], TEMPEST sought
energy-optimal paths. Unlike path duration or distance,
whose quantities increase monotonically as a plan gets
longer, energy is non-monotonic - locomotion and other
rover activities expend energy while solar energy and other
power sources restore it. Standard heuristic search
approaches to path planning would become “stuck” in
states providing a net positive energy intake, and would
never actually reach the designated goal.

TEMPEST handled this problem differently for the Sun-
Synchronous Navigation and Life in the Atacama projects.
In the Arctic, TEMPEST used ISE in its BESTDPARMS
mode with path duration as the objective function. By set-
ting a maximum duration cost on plans, TEMPEST dis-
carded partial plans that were “stuck” in energy-rich states.
Furthermore, during the search ISE kept or discarded paths
according to a “better” criterion: if two graph branches
independently reached the same position and time with the
same duration cost, ISE would remove the branch requiring
more energy to reach a goal. Solutions were “energy-opti-
mal” over their entire length, but under the restriction of the
maximum duration.

For Life in the Atacama, TEMPEST used ISE in its BEST-
PCOST mode and a new objective function that also
yielded energy-optimal paths, but with vastly improved per-
formance. ISE enables a composite objective function con-
sisting of two or more elements that can be tracked and
manipulated separately, but that collectively contribute to a
single objective function cost. To describe the specific com-
posite objective function used in the Atacama experiments,
we define the quantity Emax:

In words, Emax is the absolute value of the greatest single-
step negative cost (positive increment) to battery energy
over all states and actions, for example through solar charg-
ing. The value of the TEMPEST objective function is the
sum of two quantities:

L is a measure of plan length in increments of Emax, and B
is the sum of energy costs (positive and negative) over the
path. At each plan step, the objective function changes by

. At the most energy-rich state and action the
components cancel. For all others, the increment is positive.
The objective function increases monotonically over a path.
Using this objective function under the BESTPCOST

mode, ISE produces paths that are optimal in combined
terms of minimum plan length and energy cost.

The B term in the objective function can be used to track
the E state variable. Further, since the X, Y and T variables
are totally independent of E in all TEMPEST applications
to date, E can be removed from the search space. Collaps-
ing the four-dimensional search to three dimensions drasti-
cally reduces the computation and memory for search,
thereby enabling TEMPEST to run online and to solve
larger planning problems.

Single-Goal Planning

The simplest TEMPEST task is to plan from a start state to
a single goal position. The previous sections describe the
essential elements of the process. Given a start state, a goal
position and a goal battery energy, the software computes a
window of goal states, then calls ISE to search from all
goals. Under the BESTPCOST mode, the first detected fea-
sible path will also be the optimal. Under BESTDPARMS
mode, ISE finds the “best” feasible state that falls below the
path cost maximum. The resulting path begins at the start
state, within the start window, and arrives at one of the
goals in the goal window.

Multiple-Goal Planning

By chaining ISE searches in series, TEMPEST enables
planning to an ordered list of position goals G = {g1,…,gn},
gi = (xi, yi). TEMPEST creates a separate ISE graph for
each path “segment” between goals. As with ISE search,
planning for multiple goals happens in reverse order, from
the last segment to first segment. Multiple goal planning is
similar to single goal planning, but differs in some impor-
tant ways.

Most importantly, the optimal solution for an arbitrary seg-
ment is not necessarily part of the optimal solution for the
entire goal list. Therefore, it is incorrect to simply chain
locally-optimal segments to form the globally-optimal solu-
tion. Instead, TEMPEST tracks multiple path candidates
through all the segments, then solves for the optimal surviv-
ing candidate in the first segment. We describe the process
below.

Figure 3 depicts the algorithm for multiple-goal planning.
The horizontal axis is time, and the vertical axis, goal posi-
tions, from the start at the bottom to the final goal gn at the
top. Note that the time axis may span one or more days, as
denoted by the light and shaded regions corresponding to
“noon” and “midnight”. Each vertical interval between
goals represents one of the “segments” of the total path. As
with single-goal planning, the process for segment planning
proceeds in backwards-chaining order, from the top right of
the diagram to the bottom left.

We begin by defining the start and goal states. TEMPEST
defines the start state as in single-goal planning. The dia-
gram in Figure 3 depicts this state and the initial “start win-
dow” as a blue square on the left of the horizontal axis. For
goal states, as with single-goal planning, TEMPEST
projects the best- and worst-case durations for each seg-
ment, as depicted by the red dashed diagonal “bounding
lines” ascending up and right from the initial start window.
The left, steep bounding line represents the fastest possible
travel for each segment. The right bounding line is less

(2)

(3)

(4)

(5)

s xs ys ts es, , ,()=

tsi tsf,[]

x1(xs) y1(ys) tsi(t1 tsf≤) e1 es≤()∧≤∧=∧=

Emax min s S a A ∆e 0≤,∈,∈()∀ ∆e f s a,()==

L nEmax=

B ∆ei
i 1=

n
=

∆e Emax 0≥+

8

steep, taking into account possible stationary actions and
worst-case path length. The intersection of the bounding
lines with the horizontal goal lines defines the time range
for both the start window of one segment, and the goal win-
dow of the previous segment. The interval at the final goal
gn defines the final goal window. As in single-goal plan-
ning, the individual goal states are defined at even intervals
over the goal window (see Specifying Start and Goal States
above). Figure 3 shows these as a horizontal array of blue
squares at the goal gn.

To plan the final segment, TEMPEST defines a start win-
dow using the same bounding lines as for the goal. It
defines start times at even intervals in this window, and sets
the start energy to full battery capacity. This leaves the
energy unconstrained - according to feasibility in equation
(2), any solution that arrives at gn-1 below the start energy
satisfies the energy criterion.

Recall that the locally optimal segment solution is not, in
general, part of the global optimal. To generate plan candi-
dates for the segment, TEMPEST runs ISE separately for
each interval in the start window. Each search results in an
optimal solution for the particular start state interval,
assuming feasible paths exist. Figure 3 depicts these solu-
tions as cyan segments descending to the next lowest goal2.
The set of all candidate paths is the solution for the seg-
ment.

To plan the next earliest segment, TEMPEST defines goal
states equal in value to the start states of the optimal paths
from the previous segment. The effect is to chain segment
solutions together to build long, consistent plans one seg-
ment at a time. The process repeats for all the segments.
The process is the same for the initial segment, except that

there is only one start state. The initial segment yields a sin-
gle path. The chain of segment plans, beginning with the
initial segment plan, is the global optimum for the goal list,
depicted by the orange segment chain in Figure 3.

Plan Extension

Invariably, mission execution does not follow plans pre-
cisely. Often, unforeseen operational events cause devia-
tions from the route, schedule or energy guidelines. In
response to these deviations, TEMPEST updates plans by
re-running ISE with the most current initial rover state. ISE
simply extends its graph to the new state, yielding a new
optimal plan. There is no guarantee that the updated solu-
tion is similar to the original. This is the most basic form of
re-planning.

Re-Planning

Models of the world and rover may evolve over time as new
data is gathered. A planner that enables re-planning to can
be far more independent from Earth-bound control - it
adapts to changes and continues operations autonomously.
Through ISE, TEMPEST enables highly efficient re-plan-
ning.

Re-planning must occur when changes in the world or rover
models alters the cost for actions. Given model updates,
TEMPEST reports the changes for each affected IPARMS
state (the change may also be DPARMS dependent). ISE
determines the states affected by the change and, in subse-
quent calls, repairs the nodes in the graph to reflect the new
optimum. It is efficient because it restricts its computations
to the set of nodes affected by the changes.

Typically, new data about the world comes from rover sen-
sors. Under the backwards-chaining search, the rover posi-
tion is at the leaves of the search graph. Therefore, changes
deriving from rover sensor data affect only the ends of the
graph, and are inexpensive. In contrast, global world model
changes and changes to rover parameters often affect a
large portion of the search graph. Local re-planning typi-
cally requires less than 1% of the time for an initial search.
The more global the scope of changes, particularly in the
area near the goals, the more re-planning mimics the com-
putational cost of initial path search.

TEMPEST also provides re-planning for multi-goal
traverses. This contrasts with single-goal re-planning in that
model changes may affect more than one segment, and
hence more than one ISE graph. TEMPEST must notify
each affected ISE instance, but need only initiate re-plan-
ning from the latest affected segment. As with single-goal
re-planning, rover-local model updates are the least compu-
tationally expensive.

Now that we’ve described how TEMPEST and ISE work,
we briefly discuss how TEMPEST might be used for rover
exploration.

5.OPERATIONAL CONCEPT

Placing TEMPEST into a rover architectural framework is a
bit of a dilemma. Path planning software is often catego-
rized as low-level control software, as in robotic manipula-
tor systems. It also re-plans at reactive time scales,
reinforcing the low-level classification. However, TEM-
PEST defines coarse action sequences for day-long, multi-

Figure 3: Diagram of Multi-Goal Planning

2. Note that some goal states and start states do not produce feasible
solutions. Further note that each start state can only have one goal
state (the optimal path is unique, barring ties), but that the optimal
paths from several start states may all arrive at the same goal
state.

time

goal

gn

start
Initial
Start

Window

Final Goal Window

Search

m
id

ni
gh

t

no
on

n

1ππππ

g1

segment

.
.

n-1

time

goal

time

goal

gn

start
Initial
Start

Window

Final Goal Window

Search

m
id

ni
gh

t

no
on

n

1ππππ

g1

segment

.
.

n-1

9

kilometer traverses, and defines when and where battery
charging, hibernation and other activities occur. These tasks
are typically reserved for high-level planners.

Furthermore, TEMPEST works at very coarse resolutions.
It treats terrain traverse abstractly, ignoring features below
the scale of the elevation model. It has no detailed knowl-
edge of rover component interactions or activity scheduling
to achieve a task. It plans only sequential actions. So, it is
neither sufficiently capable to serve as the only path planner
nor is it meant to serve as the only planner-scheduler for a
robot.

We view TEMPEST and planner-scheduler software as
complementary components in a high-level planning sys-
tem. A planner-scheduler and TEMPEST might negotiate to
arrive at a mutually acceptable plan (see Figure 4). The
planner-scheduler would receive mission specifications
from human operators, and decompose the mission goals
into smaller tasks. It might determine when extensive travel
was necessary, and call upon TEMPEST to provide plans
that meet goal conditions and satisfy constraints for those
mission phases. The plans might force the planner-sched-
uler to re-sequence other portions of its plan to accommo-
date travel requirements as imposed by TEMPEST.

In very simple rover missions, as demonstrated by our
team, TEMPEST could serve as the only planner. Finally,
though designed principally as an online process, TEM-
PEST could be split into onboard and offboard elements.
The offboard element could provide initial planning, then
transmit the ISE graph to the rover to allow subsequent re-
planning.

In terms of navigation, we envision TEMPEST at the top of
a layered hierarchy. The distance between TEMPEST way-
points depends on the spatial resolution of its basis eleva-

tion map grid, typically 10-30 meters. This distance is
commensurate with the goal distances for existing local
navigation software [8][13][25]. Where TEMPEST is igno-
rant of local, small-scale terrain, local navigation planners
combine obstacle detection with path planning. Each TEM-
PEST waypoint would serve as a global goal for the local
navigator.

6. PRELIMINARY RESULTS

Simple Example

We present a sample planning problem to illustrate TEM-
PEST behaviors. A contour map in Figure 5 shows the ele-
vation profile for synthesized terrain on a mock Martian
surface. Mountains form a central pattern of valleys run-
ning in a North-South (up-down) direction, and a rounded
crater lies to the northeast. The rover starts in the morning
at the southeast corner of the map (“Start”), and must
traverse to the northwest corner (“Goal 2”). Scientists des-
ignate a target for investigation in the valley, “Goal 1”, en
route to the final destination. Mission engineers (or an
onboard planner-scheduler) require the robot to reach Goal
2 with 100 W-hr of charge left for subsequent operations.

Unfortunately, the elevation map provided to the rover is
incorrect. Its preliminary map indicates a clear exit from the
valley system at its northern extreme, between two peaks.
The actual terrain involves a far higher and steeper pass,
beyond the locomotion capability of the rover.

In this example, we run a simple simulation of the mission.
At each step, the simulated rover plans a path from its cur-
rent state, then executes one step of the plan. At each new
point, the rover “senses” the local environment, detecting
the actual elevation, slope and lighting of all cells within
two pixels. Based on this new data, TEMPEST re-plans a
path and the process continues.

Figure 4: One Model of TEMPEST’s Role in a Rover
Architecture: TEMPEST and a Planner-Scheduler negotiate
to derive plans that are mutually agreeable.

TEMPEST Planner-
Scheduler

Decision Layer

Mission Specifications (offboard)

Functional Layer

Integrated Plan

Execution
Monitors

Local Nav.

Motors

TEMPEST Planner-
Scheduler

Decision Layer

Mission Specifications (offboard)

Functional Layer

Integrated Plan

Execution
Monitors

Local Nav.

Motors Figure 5: Initial Plan Route: TEMPEST plans a path
through the valley exit to the northwest.

10

Figure 5 shows the initial TEMPEST plan route. With the
exception of a few minor path deviations, the route follows
a direct path from the start through each of the goals. Sub-
sequent re-plans during “execution” yield similar routes.
The solid red curve in Figure 6 shows the timing for the ini-
tial plan. The slope of the curve represents the rover speed
toward Goal 2. One observes that it is only slightly slower
than the theoretical fastest, straight-line approach, as shown
by the steep dash-dot line. The red solid line in Figure 7
shows the required battery energy profile for the initial
plan. The plan allows the robot to begin with an empty bat-
tery, and only requires increasing charge at the end of the
plan to meet the Goal 2 requirement. This indicates that
solar energy provides ample energy for locomotion.

The simulated rover reaches Goal 1 and continues without
stopping toward Goal 2. The nearest valley exit, according
to its internal elevation map, lies to the northwest directly in
line with its next goal. However, as it approaches the sup-
posed low pass, the robot detects the steep, intraversible
pass. Figure 8 shows the first substantial re-plan in the
sequence, based on this discovery. With no escape to the
northwest, TEMPEST selects the least expensive alterna-
tive - a detour through a narrow valley to the northeast (the
blue dashed line). This new route is a significant departure
from the original. The extra distance means that the robot
cannot reach Goal 2 before sundown.

The original plan did not anticipate the extra burden of
nightfall on battery reserves. However, TEMPEST deter-
mines a prolonged Charge action followed by overnight
Hibernation will enable it to reach Goal 2 by late morning
the following day. Figure 6 shows the rate of travel towards
Goal 2 for the detour as a dashed blue line. Note that the
robot must first reverse course, and then remains stationary
for nearly 18 hours, first in sunlight (charging batteries),
then overnight (hibernating, in the shaded region). The fol-
lowing morning, the rover continues its course around the
mountain, then moves to Goal 2.

Figure 7 shows the required battery energy profile over the
same time span, also with a blue dashed line. Note that the
re-plan still enables the robot to start from an empty battery.
However, well in advance of nightfall, the plan requires a
steady increase in battery charge to generate reserves for
the night. The battery energy requirement falls overnight -
the morning sun is sufficient to charge the battery to the
required Goal 2 level.

This example highlights how TEMPEST coordinates route,
timing and battery energy to achieve multiple goals. Unlike
many approaches to temporal planning, TEMPEST
approaches the problem as a whole rather than by simpler,
but sub-optimal, hierarchical breakdown. Incorporating this

Figure 6: Distance Towards Goal 2 vs. Time: The initial
plan follows a very direct path. The detour requires that the
rover endure a night in hibernation, as shown by the flat
region of the re-plan curve.

Figure 7: Battery Energy Requirement vs. Time: The initial
plan can start from total discharge to reach the goal charge.
The detour requires the rover to perform stationary
charging to nearly full capacity in order to endure the
nighttime.

Figure 8: First Significant Re-Plan Route: The robot
discovers a much steeper, taller pass at the end of valley,
prompting a detour around the mountain.

11

capability into a rover could provide a significant boost to
rover safety, mission time efficiency and reliability.

Life in the Atacama Project

In April 2003, TEMPEST was deployed as the long-range
path planner for the solar-powered Hyperion robot as part
of the first year of field experiments for the Life in the Ata-
cama (LITA) project [38]. We briefly summarize some of
our findings in this paper. For a more complete account of
TEMPEST results, please refer to [32] and [38].

LITA operated in Mars-relevant terrain in the Atacama
Desert in Chile. In support of the development of technolo-
gies for robotic astrobiology, the first year’s field experi-
ments focused on achieving basic autonomy and reliable
long-distance travel. TEMPEST was the sole high-level
planner for Hyperion (Figure 9) during this first, naviga-
tion-dominated year. There were seven days of fully inte-
grated navigation experiments, during which TEMPEST
generated 27 plans and 83 plan extension re-plans. Of
those, several resulted in single-command traverses of over
200 meters; the longest fully autonomous execution cov-
ered over 1100 meters.

During rover operations, a simple executive process man-
aged operator plan requests, coordinated plan execution,
and triggered re-planning. Human operators transmitted
single latitude/longitude position goals to the rover. The
executive passed a plan request to TEMPEST for the goal,

and recorded the solution. The executive executed each
action in sequence, with calls to the local navigator for
Drive actions, and by pausing for Charge actions. A health
monitor process monitored execution timing. If Hyperion
progress was too slow relative to the plan, the monitor trig-
gered a fault, prompting the executive to suspend the cur-
rent execution and to request a re-plan. Figure 10 shows a
detailed view of how successive plans (shown as thin, dot-
ted traces with point markers) varied with the evolving
rover state.

The two-layer navigation hierarchy resulted in accurate and
operationally smooth driving. TEMPEST provided way-
points, centered at 30 meter grid intervals, as global goals
for the local planner. To avoid placing goals in the center of
local obstacles, TEMPEST provided the local navigator
with rectangular goal regions (see Figure 10). The local
navigator used stereo vision to detect hazardous rocks, and
a planner that yielded safe paths to goal regions.

Computational and Memory Performance

TEMPEST operation can be divided into three phases: Pre-
Calculation, Initial Planning, and Re-Planning. The Pre-
Calculation phase computes slopes from the elevation map,
then pre-computes transition costs for the entire state space
and action space. Initial Planning is the most expensive
search, when ISE builds the graphs and yields an initial
solution. Re-Planning happens from that point as execution
continues.

The Pre-Calculation phase is dominated by transition cost
computation. Both computation and memory are
complexity, where S is the state space and A is the action
space.

Quantifying the Initial Planning phase is not straightfor-
ward. The complexity is related to the search branching fac-
tor and depth. Exhaustive expansion of actions causes a
branching factor of |A|, but the ISE dynamic state, state
dominance and resolution pruning mechanisms effectively

Figure 9: The Hyperion Robot: TEMPEST provided online
navigation planning and re-planning for several days of
Mars-relevant experiments.

Figure 10: Planned and Executed Paths: Plans progress
from bottom to top. Goal regions surrounding TEMPEST
plan waypoints acted as global goals for a local navigator.
Contours express the elevation profile.

O S A()

12

reduce this. The degree to which they help is highly domain
dependent. The search depth also depends on the domain.
Searching over homogeneous, obstacle-free terrain would
result in a shallower search than a search where the optimal
path is circuitous.

Re-Planning phase is also difficult to quantify. Re-Planning
phase complexity is lower than that of Initial Planning,
because ISE limits graph repair to the portion of the graph
affected by changes in transition costs. The closer the
changes occur to the goal state, the more re-planning
matches the computation cost of initial planning.

With this said, we provide a single example of TEMPEST
performance, in a simulation context, to provide a feel for
computational and memory demands. Figure 11 depicts the
memory allocation for TEMPEST over all three phases as a
function of time for a typical planning problem taken from
the LITA field experiment. The experiment ran on a Pen-
tium 1.2 GHz machine with 1 GB of RAM.

In the Pre-Calculation phase, TEMPEST computed the
slope for the entire 2527-by-2356 pixel DEM (shown in
Figure 11 by the flat memory allocation in the first 88 sec-
onds), and costs for 10 actions for each of 5.1 million states
(shown as a gradually increasing slope of memory alloca-
tion ending at 640 seconds elapsed time). Though expen-
sive, the Initialization phase nominally happens only once
for a given set of goals.

The Initial Planning phase begins immediately after Pre-
Calculation. In this scenario, ISE searches over a 75-by-24
pixel area, and finds an optimal plan containing 64 way-
points.

During actual rover operations, re-planning can occur at
any time after TEMPEST generates an initial plan. This
simulation follows the Initial Planning phase immediately
with 63 back-to-back action simulations and re-plans. After
each simulated action, the simulator alters the terrain model

properties in a two-cell radius from the rover to model rover
sensing. TEMPEST re-plans at each waypoint to re-opti-
mize the path considering the newly updated model. Re-
planning.

7. CONCLUSIONS

Rover autonomy promises to significantly improve science
data return and safety while reducing operations costs for
planetary exploration missions. TEMPEST addresses a new
level of navigational autonomy that plans routes, sequences
activities, manages resources, and enforces constraints.
Working in conjunction with Planner-Scheduler software,
TEMPEST could add a solid grounding for segments of a
mission in which travel is a primary activity.

TEMPEST enables planning in a state space of position,
time and battery energy, and enables highly efficient re-
planning in response to updates in world and rover models.
Experiments in simulation show that the planner derives
plans that balance the considerations of route, timing and
energy, even when presented with unexpected situations.
Field experiments on an actual rover demonstrate that
TEMPEST selects reasonable routes through large-scale
terrain, and adapts well to operational delays through policy
extension.

The planner has several limitations - these may or may not
be problematic for future planetary missions. TEMPEST
does not represent parallel actions nor partial-ordering as
many generic planners do. However, we expect that it
would operate in conjunction with a Planner-Scheduler, and
could provide sufficiently detailed action modeling to side
step the issue.

Perhaps more importantly, TEMPEST does not explicitly
address uncertainty. The planetary exploration domain is
rife with uncertainty - rover behavior, unknown terrain,
operational variations to name a few sources. Re-planning
is a “last-minute” approach to uncertainty. In many situa-
tions, re-planning might prove to be “too little, too late.”
Optimal plans often pass very close to hazardous situations.
This proximity means that small delays or uncertain state
estimation might cause a robot to pass into danger.

By committing to an objective function relating to one
aspect of rover operations, TEMPEST may not be able to
perform well in all situations. TEMPEST currently uses a
combined metric of energy and plan length to optimize.
However, even for a an application to solar or RTG-pow-
ered operations, this may not always be the right metric. By
specifying a more general metric, grounded in achieving
mission objectives, might be able to address a wider range
of scenarios. Alternatively, a rover might be able to create
different instantiations of TEMPEST, depending on the spe-
cific behavior mission operations wish the robot to exhibit.

8. CURRENT AND FUTURE WORK

Implementation

In connection with the Mars Technology Program and
CLARAty [34] development, our team is currently re-
implementing TEMPEST to comply with the CLARAty
coding standards, and to significantly improve TEMPEST
functionality. The new implementation is written in C++,
and leverages substantially from the object-oriented para-
digm. At the lowest level, the new design will use CLAR-
Aty base classes (e.g. vectors, arrays, matrices). More

Figure 11: Computational and Memory Performance: State
transition cost pre-calculation and initial search are
expensive but infrequent. Re-planning is inexpensive, but
more common.

Slope calc.
(optional)

Start cost calc.

Start init. ISE search

Init. plan solution

Model updates & re-planning
Slope calc.
(optional)

Start cost calc.

Start init. ISE search

Init. plan solution

Model updates & re-planning

13

importantly, C++ classes will replace the procedural code
that dominates the current implementation.

The revised implementation will enable a much richer spec-
ification of planning problems, and will require far less
effort to re-adapt the software to different scenarios, or to
replace or augment the current search algorithm. The modi-
fied implementation will also allow TEMPEST to pull
rover models from the CLARAty functional layer, thereby
avoiding proliferation of models that plagues some soft-
ware systems.

Planning Under Uncertainty

Both the Sun-Synchronous Navigation project and the first
year of the Life in the Atacama project highlighted vulnera-
bilities of the TEMPEST approach to uncertainty. We are
currently pursuing techniques for efficiently (and approxi-
mately) planning under the most common sources of uncer-
tainty. This includes imposing constraints defined by
confidence intervals on arrival time and battery energy
within ISE, to employing a Markov Decision Process to
account for various control noise in plan execution. Our
hope is that future versions of TEMPEST will guard against
some forms of uncertainty, thereby improving rover safety
margins.

High-Fidelity Simulation Testing

Given that extended field experiments are rare and limited
in duration, it is our goal to test TEMPEST more exhaus-
tively under high-fidelity simulation. We intend to test on
ROAMS, an advanced rover simulator developed at NASA
JPL [39]. To generate statistics on the sensitivity of TEM-
PEST plans to uncertainty, we intend to utilize synthesized
terrain [7] and introduce noise to the basis simulation mod-
els, then have TEMPEST repeatedly plan and re-plan routes
during simulated traverses. To date, all our data regarding
uncertainty is anecdotal, and isolated. By conducting
repeated realistic simulations, it is our hope to generate a
more concrete basis for developing planning under uncer-
tainty, as well as for general development.

9. ACKNOWLEDGMENTS

This research was funded under the Mars Technology Pro-
gram, the NASA Life in the Atacama project, and the
NASA Sun-Synchronous Navigation project. We wish to
thank all the participants of those projects for their support
in designing, developing and testing TEMPEST.

 REFERENCES

[1] C. H. Acton Jr., “Ancillary Data Services of NASA’s
Navigation and Ancillary Information Facility”, Plane-
tary and Space Science, 44 (1):65-70, 1996.

[2] D. Bernard, G. Dorais, E. Gamble, B. Kanefsky, J.
Kurien, G. Man, W. Millar, N. Muscettola, P. Nayak, K.
Rajan, N. Rouquette, B. Smith, W. Taylor, Y. Tung,
“Spacecraft Autonomy Flight Experience: The DS1
Remote Agent Experiment,” Proceedings of the AIAA
Conference 1999, Albuquerque, NM.

[3] J. Bobrow, S. Dubowsky, J. Gibson, “Time-Optimal
Control of Robotic Manipulators Along Specified
Paths,” International Journal of Robotics Research,
Vol. 4, No. 3, Fall 1985.

[4] S. Chien, G. Rabideau, R. Knight, R. Sherwood, B.
Engelhardt, D. Mutz, T. Estlin, B. Smith, F. Fisher, T.
Barrett, G. Stebbins, D. Tran, “ASPEN - Automating
Space Mission Operations using Automated Planning
and Scheduling,” SpaceOps 2000, Toulouse, France,
June 2000.

[5] J. Cutts, S. Hayati, D. Rapp, C. Chu, J. Parrish, D.
Lavery, R. DePaula, “The Mars Technology Program,”
Proceedings of the 6th International Symposium on
Artificial Intelligence, Robotics & Automation in Space
(i-SAIRAS 2001), St-Hubert, Quebec, Canada, June,
2001.

[6] T. Fraichard, “Dynamic Trajectory Planning with
Dynamic Constraints: a ‘State-Time Space’
Approach,” Proceedings of the 1993 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS 93), Yokohama, Japan, July 1993.

[7] R. Gaskell, J. Collier, L. Husman, R. Chen, “Synthetic
Environments for Simulated Missions,” Proceedings of
the IEEE Aerospace Conference, Big Sky, MT, March
2001.

[8] S. Goldberg, M. Maimone, L. Matthies, “Stereo Vision
and Rover Navigation Software for Planetary Explora-
tion,” Proceedings of the 2002 IEEE Aerospace Con-
ference, Big Sky, MT, March 2002.

[9] A. Howard, B. Werger, H. Seraji, “Integrating Terrain
Maps into a Reactive Navigation Strategy,” Proceed-
ings of the IEEE International Conference on Robotics
and Automation (ICRA 2003), Taipei, Taiwan, Septem-
ber 2003.

[10] K. Iagnemma, H. Shibly, A. Rzepniewski, S.
Dubowsky, “Planning and Control Algorithms for
Enhanced Rough-Terrain Rover Mobility,” Proceed-
ings of the 6th International Symposium on Artificial
Intelligence, Robotics and Automation in Space (i-
SAIRAS 2001), St-Hubert, Quebec, Canada, June 2001.

[11] L. Kavraki, P. Svestka, J-C Latombe, M. Overmars,
“Probabilistic Roadmaps for Path Planning in High-
Dimensional Configuration Spaces,” IEEE Transac-
tions on Robotics and Automation, Vol. 12, No. 4,
August 1996.

[12] O. Khatib, “Real-Time Obstacle Avoidance for Manip-
ulators and Mobile Robots,” International Journal of
Robotics Research, Vol 5. No. 1, p 60, 1986.

[13] S. Laubach and J. Burdick, “RoverBug: An Autono-
mous Path-Planner for Planetary Microrovers,” Sixth
International Symposium on Experimental Robotics
(ISER 99), Sydney, Australia, March 1999.

[14] S. LaValle, “Rapidly-Exploring Random Trees: A New
Tool for Path Planning,” TR 98-11, Computer Science
Department, Iowa State University, October, 1998.

[15] B. Logan, N. Alechina, “A* with Bounded Costs,”
Proceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI-98), Madison, WI, July,
1998.

[16] N. Nilsson, “A Mobile Automation: an Application of
Artificial Intelligence,” Proceedings of the Interna-

14

tional Joint Conferences on Artificial Intelligence,
1969.

[17] C. O’Dunlaing, M. Sharir, C. Yap, “Retraction: A New
Approach to Motion Planning,” ACM Symposium on
Theory of Computing, 15:207-220, 1983.

[18] D. Pai, L. Reissell, “Multiresolution Rough Terrain
Motion Planning,” IEEE Transactions on Robotics and
Automation, Vol. 14, No. 1, February 1998.

[19] J. Pearl, Heuristics: Intelligent Search Strategies for
Computer Problem Solving, Addison-Wesley, Reading,
MA, 1984.

[20] R. Richbourg, N. Rowe, M. Zyda, R. McGhee, “Solv-
ing Global Two-Dimensional Routing Problems using
Snell’s Law and A* Search,” Proceedings of the 1987
IEEE International Conference on Robotics and Auto-
mation (ICRA 87), Raleigh, NC, March 1987.

[21] N. Rowe, “Roads, Rivers and Obstacles: Optimal Two-
Dimensional Path Planning around Linear Features for
a Mobile Agent,” International Journal of Robotics
Research 9, no. 6, pp. 67-74, December 1990.

[22] S. Russell, P. Norvig, Artificial Intelligence: A Modern
Approach, Prentice-Hall Publishers, Upper Saddle
River, NJ, Copyright 1995.

[23] K. Shillcut, “Solar Based Navigation for Robotic
Explorers,” Ph.D. thesis, technical report CMU-RI-
TR-00-25, October 2000.

[24] Z. Shiller, Y. Gwo, “Dynamic Motion Planning of
Autonomous Vehicles,” IEEE Transactions on Robot-
ics and Automation, Vol. 7, No. 2, April 1991.

[25] S. Singh, R. Simmons, T. Smith, A. Stentz, V. Verma,
A. Yahja, K. Schwehr, “Recent Progress in Local and
Global Traversability for Planetary Rovers”, Proceed-
ings from the 1999 IEEE International Conference on
Robotics and Automation (ICRA 99), 1999.

[26] A. Stentz, “The Focussed D* Algorithm for Real-Time
Replanning”, Proceedings of The 14th International
Joint Conference on Artificial Intelligence (IJCAI-95),
Montreal, Canada, August 1995.

[27] A. Stentz, M. Hebert, “A Complete Navigation System
for Goal Acquisition in Unknown Environments”,
Autonomous Robots, Vol. 2, No. 2, August 1995.

[28] A. Stentz, “Optimal and Efficient Path Planning for
Unknown and Dynamic Environments”, International
Journal of Robotics and Automation, Vol. 10, No. 3,
1995.

[29] A. Stentz, “CD*: A Real-time Resolution Optimal Re-
Planner for Globally Constrained Problems,” Proceed-
ings of the Eighteenth National Conference on Artifi-
cial Intelligence (AAAI-02), Edmonton, AB, Canada,
July 2002.

[30] A. Stentz, “Optimal Incremental Search for High-
Dimensional, Constrained Path Finding Problems,”
Carnegie Mellon Robotics Institute Technical Report,
to be released 2002.

[31] P. Tompkins, A. Stentz, W. Whittaker, “Mission Plan-
ning for the Sun-Synchronous Navigation Field Exper-

iment,” Proceedings of the 2002 IEEE International
Conference on Robotics and Automation (ICRA 02),
Washington D.C., May 2002.

[32] P. Tompkins, A. Stentz, W. Whittaker, “Experiments in
Mission-Level Path Execution and Re-Planning,” sub-
mitted to the Conference on Intelligent Autonomous
Systems (IAS 04), Amsterdam, Netherlands, 2004.

[33] C. Urmson, “Locally Randomized Kinodynamic
Motion Planning for Robots in Extreme Terrain,”
Ph.D. thesis proposal, The Robotics Institute, Carnegie
Mellon University, 2002.

[34] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, H.
Das, “The CLARAty Architecture for Robotic Auton-
omy,” Proceedings of the 2001 IEEE Aerospace Con-
ference, Big Sky, MT, March 2001.

[35] R. Volpe, S. Peters, “Rover Technology Development
and Infusion for the 2009 Mars Science Laboratory
Mission,” Proceedings of the 7th International Sympo-
sium on Artificial Intelligence, Robotics and Automa-
tion in Space (i-SAIRAS 2003), Nara, Japan, May 2003.

[36] D. Wettergreen, B. Shamah, P. Tompkins, R. Whit-
taker, “Robotic Planetary Exploration by Sun-Synchro-
nous Navigation”, Proceedings of the 6th International
Symposium on Artificial Intelligence, Robotics and
Automation in Space (i-SAIRAS 01), Montreal, Canada,
2001.

[37] D. Wettergreen, M. B. Dias, B. Shamah, J. Teza, P.
Tompkins, C. Urmson, M. Wagner, W. Whittaker,
“Experiments in Sun-Synchronous Navigation,” Pro-
ceedings of the 2002 IEEE International Conference
on Robotics and Automation (ICRA 02), Washington
D.C., May 2002.

[38] D. Wettergreen, N. Cabrol, F. Calderon, M. Deans, D.
Jonak, A. Luders, F. Shaw, T. Smith, J. Teza, P. Tomp-
kins, C. Urmson, V. Verma, A. Waggoner, M. Wagner,
“Life in the Atacama: Field Season 2003 Experiment
Plans and Technical Results,” CMU technical report
CMU-RI TR-03-50, October, 2003.

[39] J. Yen, A. Jain, “ROAMS: Rover Analysis Modeling
and Simulation Software,” in Proceedings of the 5th
International Symposium on Artificial Intelligence,
Robotics and Automation in Space (i-SAIRAS 99),
Noordwijk, Netherlands, June 1999.

15

AUTHOR BIOGRAPHIES

Paul Tompkins is a Doctoral
Candidate in The Robotics
Institute at Carnegie Mellon
University. He received his
M.S. in Robotics from Carn-
egie Mellon University in
2001, his M.S. in Mechanical
Engineering from Stanford
University in 1997, and his
B.S. in Aeronautics and
Astronautics from MIT in
1992.

Following his undergraduate
program, he worked for five
years at Hughes Space and
Communications Company
as a mission analyst and

orbital operations team member. During this time he was a
lead mission analyst for several geostationary commercial
satellite programs, and also led several orbital operations
campaigns from liftoff to on-orbit delivery.

Mr. Tompkins returned to full-time academic status in 1998
at Carnegie Mellon University, where he researches naviga-
tion planning for planetary rover applications. He was a
participant in the Sun-Synchronous Navigation project,
during which he initiated work on TEMPEST. The project
culminated in a field experiment on Devon Island in the
Canadian Arctic in July 2001. He remains lead developer
for TEMPEST in support of the Life in the Atacama project
and under the Mars Technology Program. He is the recipi-
ent of the Hughes Electronics Graduate Fellowship and is
currently a NASA Graduate Student Research Program Fel-
low, sponsored under NASA Ames Research Center.

Dr. Anthony Stentz is a
Research Professor at the
Robotics Institute, Carnegie
Mellon University, and Asso-
ciate Director of the Robotics
Institutes National Robotics
Engineering Consortium. He
received his Ph.D. in com-
puter science from Carnegie
Mellon University in 1989,
his M.S. in computer science
from CMU in 1984, and his
B.S. in physics from Xavier
University of Ohio in 1982.

Dr. Stentz’s research exper-
tise includes unmanned
ground vehicles, unmanned

air vehicles, dynamic planning, multi-vehicle planning and
coordination, perception for mobile vehicles, robot archi-
tecture, and artificial intelligence in the context of field
worthy systems. Dr. Stentz was the first to merge the fields
of incremental algorithms and heuristic search to produce
very fast re-planners for dynamic environments. His D*
algorithm has been used in unmanned ground vehicles,
unmanned air vehicles, planetary rover prototypes, and
indoor robots. Dr. Stentz and his students pioneered the use
of market techniques to control a team of robots to provide
fault tolerance, opportunistic optimization, and robustness
to changing conditions, new tasks, and unexpected out-

comes. He has transferred robotics technology to industry,
by automating harvesting and spraying operations for agri-
culture, mass excavation for surface mining, continuous
mining for underground mining, and inspection tasks for
nuclear facilities.

Dr. Stentz has served on the editorial board or program
committee for ICRA, AAAI, IAS, SPIE, and IFAC. He has
executed projects for DARPA, NASA, ARL, DOE, USBM,
NSF, Caterpillar, Boeing, New Holland, Westinghouse,
General Dynamics, Joy Mining Machinery, and Deere &
Company. He has over one hundred journal articles, confer-
ence and workshop papers, books, technical reports, and
patents to his credit. Dr. Stentz is the recipient of the 1997
Alan Newell Award for Research Excellence.

Dr. David Wettergreen’s
research area is robotic explo-
ration and spans concept for-
mulation through system
synthesis to field experimen-
tation. He addresses explora-
tion underwater, on the
surface, and in air and space,
and in the necessary ingredi-
ents of perception, planning,
execution and control for
robot autonomy. He is cur-
rently leading robotics
research for the Life in the
Atacama investigation using
Hyperion, a solar-powered
rover for life seeking. Hyper-
ion has demonstrated 24-hour

sun-synchronous navigation on Devon Island in the Cana-
dian arctic and an instance of one-command, one-kilometer
autonomous traverse in the Atacama Desert of Chile.

Dr. Wettergreen previously established a research program
in underwater robotics at the Australian National Univer-
sity; the Kambara project investigates learning and adaptive
methods of vehicle control and sensor-based guidance
underwater. Dr. Wettergreen held an NRC Research Associ-
ateship at NASA Ames Research Center, were he devel-
oped a behavior-based control architecture for planetary
rovers and conducted field experiments with new tech-
niques for visual servo-control with the Marsokhod rover.
He developed telepresence interfaces for the Nomad robot
for its 200km trek in the Atacama Desert. In his doctoral
research he investigated control and planning for legged
robots through development of three systems: Ambler, a
legged robot for Mars exploration, and Dante I & II, rappel-
ling robots for volcano exploration. That research devel-
oped and demonstrated a hybrid control architecture for
reactive behaviors and deliberative guidance and involved
extensive field experimentation at sites including Mount
Spurr, Alaska and Mount Erebus, Antarctica.

